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The kappa distribution of velocities

The (symmetrical) kappa distribution for the velocity v of a particle in a
plasma∗ can be written as

P(v|κ, vth) =
1

ηκ(vth)

[
1 +

1
κ − 3

2

v2

v2
th

]−(κ+1)

Here, κ is the spectral index and vth is the so-called thermal velocity, such that

mv2
th

2
= kBT (1)

defines a temperature T.

The limit κ → ∞ of the kappa distribution is the Maxwell-Boltzmann
distribution,

lim
κ→∞

P(v|κ, vth) =

(√
m

2πkBT

)3

exp
(
− mv2

2kBT

)
. (2)

∗G. Livadiotis and D. J. McComas. Astrophys. J. 741, 88 (2011).
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The kappa distribution as a q-canonical distribution

By defining the q-exponential function

exp(x; q) :=
[
1 + (1 − q)x

] 1
1−q

+
(3)

such that exp(x; 1) = exp(x), we can write the kappa distribution as

P(v|κ, vth) =
1

ηκ(vth)
exp

(
− mv2

2kBT0
; q
)

, (4)

provided that we set q = 1 +
1

κ + 1
and kBT0 =

(
κ − 3

2
κ + 1

)
mv2

th
2

.

In the limit κ → ∞ we see that q → 1 and T0 → T.
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The kappa distribution from Tsallis entropy

Maximizing the non-extensive (Tsallis) entropy∗

Sq[p] :=
1

q − 1

(
1 −

∫
dvp(v)q

)
(5)

subject to the constraints on the escort expectation∫
dv p(v)q

(
mv2

2

)
= k (6)

and normalization, ∫
dvp(v) = 1, (7)

we can recover the kappa distribution as

p(v) ∝
[

1 + (q − 1)
mv2

2kBT0

] 1
1−q

= exp
(
− mv2

2kBT0
; q
)

. (8)

∗C. Tsallis. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World . Springer, 2009.

Sergio Davis (CCHEN, UNAB) Temperature in nonequilibrium plasmas SigmaPhi 2023, July 10-14th 2023 (6)



Temperature of steady states
Recall the Liouville equation for a nonequilibrium, Hamiltonian system,

∂P(Γ|t)
∂t

+
{

P(Γ|t),H(Γ)
}
= 0. (9)

A particular family of time-independent solutions are

P(Γ|S) = ρ
(
H(Γ); S

)
, (10)

where ρ(E; S) is the ensemble function with parameters S.
For these steady states we will define∗ the fundamental inverse temperature

βF(E; S) := − ∂

∂E
ln ρ(E; S)

such that βS :=
〈

βF
〉

S is the inverse temperature of the ensemble.

Just as β is a parameter of the canonical ensemble P(Γ|β),
βF is a feature of the steady state ensemble P(Γ|S).

∗S. Davis, G. Gutiérrez. Physica A 533, 122031 (2019).
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Some examples of fundamental temperature

Canonical ensemble:

ρ(E; β) =
exp(−βE)

Z(β)
⇐⇒ βF(E; β) = β

q-canonical (Tsallis) ensemble:

ρ(E; q, β) =
1

Zq(β0)

[
1+(q− 1)β0E

] 1
1−q

+
⇐⇒ βF(E; q, β0) =

β0

1 + (q − 1)β0E

Gaussian ensemble:

ρ(E; A, E0) =
1

ηA(E0)
exp

(
− A(E − E0)

2) ⇐⇒ βF(E; A, E0) = 2A(E − E0)
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Equivalence between temperatures
Defining the microcanonical inverse temperature βΩ as

βΩ(E) :=
∂

∂E
ln Ω(E) =

1
kB

(
∂SE
∂E

)
(11)

with Ω(E) :=
∫

dΓδ(H(Γ)− E) the density of states, we can show that

βS =
〈

βF
〉

S =
〈

βΩ
〉

S. (12)

Moreover, because in the microcanonical ensemble we have〈
βR
〉

E = βΩ(E) (13)

with βR the Rugh-Rickayzen∗ “dynamical temperature”,

βR(Γ) := ∇ ·
(

ω

ω · ∇H

)
, (14)

for a differentiable field ω(Γ), it follows by taking expectation of Eq. 13 that

βS =
〈

βF
〉

S =
〈

βR
〉

S. (15)

∗H. H. Rugh. Phys. Rev. Lett. 78, 772 (1997) ; G. Rickayzen, J. G. Powles. J. Chem. Phys. 114, 4333 (2001).
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Superstatistics

Superstatistics∗ is a framework where the inverse temperature is promoted to
a random variable.
The joint distribution of β with the microstates Γ is

P(Γ, β|S) = P(Γ|β)P(β|S) =
[

exp
(
− βH(Γ)

)
Z(β)

]
P(β|S). (16)

Marginalization of β gives the superstatistical ensemble

P(Γ|S) =
∫ ∞

0
dβP(β|S)

[
exp(−βH(Γ))

Z(β)

]
= ρ(H(Γ); S) (17)

which can be understood as a “deformation” of the canonical ensemble.

The ensemble function is given by

ρ(E; S) =
∫ ∞

0
dβ f (β) exp(−βE) where f (β) :=

P(β|S)
Z(β)

i.e. is the Laplace transform of f (β).

∗C. Beck and E. G. D. Cohen. Physica A 322, 267 (2003).
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Superstatistics and the kappa distribution
The kappa distribution can be obtained from superstatistics using a gamma
distribution of inverse temperatures,

P(β|u, βS) =
1

uβS Γ(1/u)
exp

(
− β

uβS

)(
β

uβS

) 1
u−1

where βS =
〈

β
〉

u,βS
and u :=

〈
(δβ)2〉

u,βS

(βS)2 is the relative variance of β.

The original parameters κ and vth are

κ =
1
u
+

1
2

,
mv2

th
2

=
1

(1 − u)βS
, (18)

and we see that u → 0 is equivalent to κ → ∞ (Maxwell-Boltzmann). In fact,

lim
u→0

P(β|u, βS) = δ(β − βS), (19)

then superstatistics reduces to the canonical ensemble.
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Fundamental temperature in superstatistics

P(Γ, β|S) = exp
(
− βH(Γ)

)
f (β) =⇒ P(E, β|S) = exp(−βE)f (β)Ω(E)

Because P(E|S) =
〈
δ(H− E)

〉
S = ρ(E; S)Ω(E) we can write

P(β|E, S) =
P(E, β|S)

P(E|S) =
exp(−βE)f (β)���Ω(E)

ρ(E; S)���Ω(E)
. (20)

Using ρ(E; S) =
∫ ∞

0 dβf (β) exp(−βE) it follows that

βF(E) = − 1
ρ(E|S)

∂ρ(E|S)
∂E

=
∫ ∞

0
dβ

[
f (β) exp(−βE)

ρ(E; S)

]
=P(β|E,S)

·β, (21)

that is, βF(E; S) =
〈

β
〉

E,S

Taking expectation of βF(E; S) =
〈

β
〉

E,S, we have βS =
〈

β
〉

S so, in fact,

βS =
〈

βF
〉

S =
〈

βΩ
〉

S =
〈

βR
〉

S =
〈

β
〉

S. (22)
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A simple condition leads to kappa

P(v1|S) =
∫

dv2 . . . dvn pn
(
E(v1, . . . , vn)

)
E(v1, . . . , vn) =

m1v2
1

2
=k1

+
n

∑
i=2

miv2
i

2

=K

P(v1|S) = p1(k1)

A necessary and sufficient condition∗ to have a kappa distribution is

k∗ := argmax
k1

P(k1|K, S) = γn + αnK

i.e. the most probable kinetic energy of the test particle increases linearly
with the kinetic energy of the environment.

The complex character of the plasma is then encoded in the
statement: “any given particle is correlated with its environment”

∗S. Davis, G. Avaria, B. Bora, J. Jain, J. Moreno, C. Pavez, L. Soto. arXiv:2304.3792 (2023).
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A sketch of the proof (1)
Recalling P(v1, . . . , vn|S) = pn

(
∑n

i=1 miv2
i /2
)

we have the joint distribution

P(k1, K|S) = pn(k1 + K)Ω1(k1)Ωn−1(K) with Ωm(E) ∝ E
3m
2 −1

From this we obtain the conditional distribution of k1 given K,

P(k1|K, S) =
pn(k1 + K)Ω1(k1)

pn−1(K)
. (23)

The condition that k∗ is an extremum of k1 given K leads to[
∂

∂k1
ln P(k1|K, S)

]
k1=k∗

= −β
(n)
F (k∗ + K) +

1
2k∗

= 0, (24)

and after replacing k∗ = γn + αnK we solve for the fundamental temperature

β
(n)
F (E) =

αn + 1
2
(
γn + αnE

)
that is, we already see that pn(k1 +K) corresponds to a q-canonical ensemble.
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A sketch of the proof (2)
The fundamental inverse temperature bF of the test particle is

bF(k1; S) =
〈

β
(n)
F

〉
k1,S

=

〈
αn + 1

2
(
γn + αn(k1 + K)

)〉
k1,S

=
α1 + 1

2
(
γ1 + α1k1

) (25)

which is equal to β
(1)
F and by integration leads to the kappa distribution

p1(k1) ∝
[

1 +
(

α1

γ1

)
k1

]− 1
2

(
1+ 1

α1

)
with κ =

1
2α1

− 1
2

,
mv2

th
2

=
2γ1

1 − 4α1
.

This agrees with the result from superstatistics using P(β|u, βS),

p1(k1) =

(√
m
2π

)3 ∫ ∞

0
dβ

[
β

3
2 exp(−βk1)

uβS Γ(1/u)

]
exp

(
− β

uβS

)(
β

uβS

) 1
u−1

=

(√
muβS

2π

)3 [
1 + uβSk1

]−( 1
u+

3
2 )

(26)
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Equipartition, uncertainty and correlation
The mean and variance of k1 in the kappa distribution in terms of (u, βS) are〈

k1
〉

u,βS
=

3
2
· kBTS

1 − u
and

〈
(δk1)

2〉
u,βS

=
〈
k1
〉2

u,βS
· 2 + u

3(1 − 2u)

where kBTS := 1/βS. It follows that u < 1/2, and then κ > 5/2.

With u = 0 we recover the well-known result for the relative variance of k1 in
the Maxwell-Boltzmann distribution, namely 2/3.

〈
δk1δk

〉
u,βS

=
〈
k1
〉2

u,βS
· u

1 − 2u
≥ 0

where k := lim
n→∞

1
n − 1

n

∑
i=2

miv2
i

2
.
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A further connection between βF and β

Earlier results on the single-particle velocity distributions in collisionless
plasmas1 gave the superstatistical approximation

P(β|S) ≈
∫ ∞

0
dKP(K|S)δ

(
β − β

(n)
F (K)

)
(27)

for k1 ≪ K. Defining the fundamental inverse temperature of the environment

BF(K) := β
(n−1)
F (K) (28)

and using Eq. 27 we arrive at

P(β|S) = lim
n→∞

P(BF = β|S)

In the thermodynamic limit we see that

lim
n→∞

BF(K) =
3
2k

where k = lim
n→∞

K
n − 1

,

in complete agreement with a recent result2 connecting β in superstatistics
and the equipartition temperature.
1S. Davis, G. Avaria, B. Bora, J. Jain, J. Moreno, C. Pavez, L. Soto. Phys. Rev. E 100, 023205 (2019).
2E. Gravanis, E. Akylas, G. Livadiotis. EPL 130, 30005 (2020).
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The inverse temperature covariance U

For the kappa distribution, and, in general for superstatistics, we have

U := u(βS)
2 =

〈
(δβ)2〉

S ≥ 0. (29)

However, it can be shown∗ that for an arbitrary steady state,

U =
〈
(δβΩ)2〉

S +
〈

βΩ
′〉

S =
〈
(δβF)

2〉
S −

〈
βF

′〉
S. (30)

In the case of βΩ
′ < 0 and βF

′ > 0, U could in principle be negative

=⇒ Cannot be described by superstatistics (!)

Because

βΩ
′(E) = − βΩ(E)2

CE
< 0, (31)

a positive specific heat CE is required. Can we find an actual example?

∗S. Davis. Physica A 608, 128249 (2022).
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Systems with negative U

For H(Γ1, Γ2) = H1(Γ1) +H2(Γ2) it can also be shown1 that

U =
〈

δbΩ(H1)δBΩ(H2)
〉

S
(32)

U < 0 =⇒ temperatures of target and environment are anticorrelated.

This can ocurr for an isolated system, i.e. when

H1(Γ1) +H2(Γ2) = E0

if bΩ and BΩ are both monotonically decreasing functions, that is, when both
subsystems have CE > 0.

We have recently2 illustrated this for an isolated Ising chain.
Another example: Gaussian ensemble with constant CE.
Yet another: q-canonical (Tsallis) ensemble for q < 1 and constant CE.

1S. Davis. Physica A 608, 128249 (2022).
2C. Farías, S. Davis. Eur. Phys. J. B 96, 39 (2023).
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A classification of nonequilibrium steady states
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In summary. . .

The temperature of a steady state can be described by the fundamental
(βF) as well as the microcanonical (βΩ) inverse temperatures.

In superstatistics, βF(E) is the conditional mean of β given E and, in fact,
βF determines the superstatistical ensemble (a theorem coming soon).

The kappa distribution follows from a simple condition on the most
probable kinetic energy of a particle given that of its environment.

There is a whole space of steady state models outside superstatistics:
subcanonical models where U < 0, as well as supercanonical models
where U > 0 but Var(βF) > Var(βΩ).
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