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Non-equilibrium thermodynamics:
Steady states (e.g. superstatistics), maximum caliber models

Complexity and information:
Information entropy, Bayesian inference

Computational Statistical Mechanics:
Monte Carlo Simulation in generalized ensembles
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The main idea: correlation between subsystems

Complex systems cannot be reduced to independent parts: correlations!
Correlations are more important than interactions?
What is temperature in non-equilibrium states?
Connection between correlations and temperature fluctuations
Invariant quantities upon the choice of target and environment
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A composite system in canonical equilibrium

Neglecting the interaction energy, we have

HAB(ΓA, ΓB) = HA(ΓA) +HB(ΓB) +������:≈ 0
Hint(ΓA, ΓB)

P(ΓA, ΓB|β) =
exp

(
− βHAB(ΓA, ΓB)

)
ZAB(β)

=
exp

(
− βHA(ΓA)

)
ZA(β)

exp
(
− βHB(ΓB)

)
ZB(β)

= P(ΓA|β)P(ΓB|β)

Canonical =⇒ uncorrelated therefore correlated =⇒ non-canonical

Correlations between target and environment imply
non-canonical ensembles: temperature fluctuations
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Steady-state ensembles out of equilibrium

P(Γ|β) =
exp

(
− βH(Γ)

)
Z(β)

canonical ensemble

P(Γ|E) =
δ
(
E −H(Γ)

)
Ω(E)

microcanonical ensemble

We will generalize these cases to a steady-state ensemble of the form

P(Γ|S) = ρ
(
H(Γ); S

)
where ρ(•; S) is the ensemble function with parameters S.

In general, the subsystems are not statistically independent,

P(ΓA, ΓB|S) = ρ
(
HA(ΓA) +HB(ΓB); S

)
̸= P(ΓA|S)P(ΓB|S). (1)

The ensemble can introduce correlations even without interactions
These correlations may even be long-ranged (e.g. fixed global property)
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Composite systems in general steady states

The distribution of the target is obtained by “integrating out” the environment,

P(ΓA|S) =
∫

dΓB P(ΓA, ΓB|S) =
∫

dΓB ρ
(
HA(ΓA)+HB(ΓB); S

)
= ρA

(
HA(ΓA); S

)
It is a steady state but, in general, different in shape from the original:

ρA(EA; S) =
∫

dEB ΩB(EB)ρ
(
EA + EB; S

)
The ensemble function ρA for the target will depend on the
details of the environment through its density of states.

The distribution of EA and joint distribution of (EA, EB) are given by

P(EA|S) =
〈

δ
(
EA −HA

)〉
S
= ρA(EA; S)ΩA(EA)

P(EA, EB|S) =
〈

δ
(
EA −HA

)
δ
(
EB −HB

)〉
S
= ρ(EA + EB; S)ΩA(EA)ΩB(EB)
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The microcanonical inverse temperature
For an isolated composite system we have

ρA(EA; E) =
∫

dEB ΩB(EB)

[
δ
(
E − EA − EB

)
Ω(E)

]
=

ΩB
(
E − EA

)
Ω(E)

If the environment is large, that is, EA ≪ E, we can approximate

ln ΩB(E − EA) ≈ ln ΩB(E)− ∂E ln ΩB(E)EA

=⇒ ρA(EA|E) =
ΩB

(
E − EA

)
Ω(E)

≈ ΩB(E)
Ω(E)

exp
(
− βEEA

)
βΩ(E) :=

∂

∂E
ln Ω(E) (microcanonical inverse temperature)

βΩ(E) =
1

kBT
if

1
T

=
∂S(E)

∂E
and S(E) = kB ln Ω(E)

This is an intrinsic observable: Ω(•) only depends on the shape of H
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The fundamental inverse temperature

On the other hand, for any ensemble P(Γ|S) = ρ
(
H(Γ); S

)
we can define∗

βF(E; S) := − ∂

∂E
ln ρ(E; S) (fundamental inverse temperature)

This observable is not intrinsic: depends on the shape of the ensemble

ρ(E; β0) =
exp(−β0E)

Z(β0)
⇐⇒ βF(E; β0) = β0

Canonical ensemble is equivalent to constant βF

Any ensemble other than canonical will have temperature fluctuations

ρ(E; A, E0) =
exp

(
− A(E − E0)

2)
ηA(E0)

⇐⇒ βF(E; A, E0) = 2A(E − E0)

ρ(E; q, β0) =
1

Zq(β0)

[
1 + (q − 1)β0E

] 1
1−q

+
⇐⇒ βF(E; q, β0) =

β0

1 + (q − 1)β0E

∗S. Davis and G. Gutiérrez, Phys. A 533, 122031 (2019).
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Equivalence of temperatures in steady states

Fundamental and microcanonical temperatures have the same expectation,

βS :=
〈

βF
〉

S =
〈

βΩ
〉

S

so it makes sense to take βS as the value of the inverse temperature in S.

Naturally, βS will agree with standard thermodynamics for
the canonical and microcanonical ensembles.

Proof: The conjugate variables theorem∗ for the energy distribution

P(E|S) = ρ(E; S)Ω(E)

is the following identity〈
∂ω

∂E

〉
S
= −

〈
ω

∂

∂E
ln P(E|S)

〉
S
=

〈
ω
[

βF − βΩ

]〉
S

(2)

valid for any differentiable ω(E).

Using ω(E) = 1 we see that 0 =
〈

βF
〉

S −
〈

βΩ
〉

S ■
∗S. Davis, G. Gutiérrez. Phys. Rev. E 86, 051136 (2012).
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Marginalization property of the inverse temperature

Now recall the marginalization procedure to obtain ρA from ρ:

ρA
(
EA; S

)
=

∫
dEB ΩB(EB)ρ

(
EA + EB; S

)
(3)

If we define the fundamental inverse temperature of the target as

bF(EA; S) := − ∂

∂EA
ln ρA(EA; S) (4)

then one goes from βF to bF simply by taking expectation given EA:

bF(EA; S) =
〈

βF
〉

EA,S

We will call this the marginalization property of βF.

Remark: A canonical composite system has βF(•; β0) = β0 so we have

bF(EA; β0) =
〈

β0
〉

EA,β0
= β0

hence every subsystem of a canonical system must be canonical.
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Proof of the marginalization property

bF(EA; S) =
〈

βF
〉

EA,S (MP)

The conditional distribution of EB given EA in S is

P(EB|EA, S) =
P(EA, EB|S)

P(EA|S)
=

ρ(EA + EB; S)����ΩA(EA)ΩB(EB)

ρA(EA; S)����ΩA(EA)

and from it we can construct its fluctuation-dissipation theorem∗,

∂

∂EA

〈
ω
〉

EA,S =

〈
∂ω

∂EA

〉
EA,S

+

〈
ω

∂

∂EA
ln P(EB|EA, S)

〉
EA,S

=

〈
∂ω

∂EA

〉
EA,S

+
〈

ω
[
bF − βF

]〉
EA,S

which is an identity for any function ω(EA, EB) differentiable on EA.

Choosing ω(EA, EB) = 1 we immediately prove our result, as we have

0 =
〈
bF − βF

〉
EA,S = bF(EA; S)−

〈
βF

〉
EA,S ■

∗S. Davis, G. Gutiérrez. AIP Conf. Proc. 1757, 020002 (2016).
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Steady-state ensembles have a kind of equilibrium?

bF(EA; S) =
〈

βF
〉

EA,S (MP)

Taking expectation under S on both sides of (MP) we see that〈
bF
〉

S =
〈〈

βF
〉

EA,S

〉
S
=

〈
βF

〉
S = βS. (5)

In other words, βS is invariant with respect to the choice of subsystem.
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A new invariance in steady-state ensembles

Let us write the fluctuation-dissipation theorem for EB given EA under S,

∂

∂EA

〈
ω
〉

EA,S =

〈
∂ω

∂EA

〉
EA,S

+
〈

ω
[
bF − βF

]〉
EA,S

and now use the choice ω(EA, EB) = βF(EA + EB; S). We obtain

∂

∂EA

〈
βF

〉
EA,S = bF

′(EA; S) =
〈

βF
′〉

EA,S + bF(EA; S)2 −
〈

βF
2〉

EA,S

↪→ bF(EA; S)2 − bF
′(EA; S) =

〈
βF

2〉
EA,S −

〈
βF

′〉
EA,S

↪→
〈
bF

2〉
S −

〈
bF

′〉
S =

〈
βF

2〉
S −

〈
βF

′〉
S

where in the last line we have taken
〈
•
〉

S on both sides.

Using βS =
〈

βF
〉

S =
〈
bF
〉

S and substracting (βS)
2 from both sides we get〈

(δbF)
2〉

S −
〈
bF

′〉
S =

〈
(δβF)

2〉
S −

〈
βF

′〉
S (6)
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A new invariance in steady-state ensembles

Therefore we can define a new, invariant quantity∗

U :=
〈
(δβF)

2〉
S −

〈
βF

′〉
S (inverse temperature covariance)

UA = UB = UAB

As the canonical ensemble has constant βF, we must have Ucanon = 0.

∗S. Davis. Phys. A 608, 128249 (2022).
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The inverse temperature covariance
The conjugate variables theorem for P(E|S),〈

∂ω

∂E

〉
S
=

〈
ω
[

βF − βΩ

]〉
S

reveals different expressions for U =
〈
(δβF)

2〉
S −

〈
βF

′〉
S.

ω(E) = βF(E):〈
βF

′〉
S =

〈
βF

2〉
S −

〈
βFβΩ

〉
S therefore U =

〈
δβFδβΩ

〉
S

ω(E) = βΩ(E):〈
βΩ

′〉
S =

〈
βΩβF

〉
S −

〈
βΩ

2〉
S therefore U =

〈
(δβΩ)2〉

S +
〈

βΩ
′〉

S

Both βS and U can, in principle, be “measured” for a system
if we know the density of states of one of its subsystems
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The inverse temperature covariance

Another valid expression for U is U =
〈
δbΩδBΩ

〉
S

This means U ̸= 0 signals correlation between subsystems

Proof: For the conditional distribution P(EB|EA, S) =
ρ(EA + EB; S)ΩB(EB)

ρA(EA; S)
we construct its conjugate variables theorem,〈

∂ω

∂EB

〉
EA,S

=
〈

ω
[
βF −BΩ

]〉
EA,S

(7)

Using ω(EA, EB) = 1 we have 0 =�����: bF〈
βF

〉
EA,S −

〈
BΩ

〉
EA,S and it follows that

bF(EA; S) =
〈
BΩ

〉
EA,S

↪→ bF(EA; S)bΩ(EA; S) =
〈
bΩBΩ

〉
EA,S

↪→
〈
bFbΩ

〉
S−(βS)

2 =
〈
bΩBΩ

〉
S−(βS)

2 ■
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Case study: Superstatistics (Beck & Cohen, 2003)
Superstatistics is a steady-state theory with β a “random variable” such that

P(Γ, β|S) = P(β|S)P(Γ|β) = P(β|S)
exp

(
− βH(Γ)

)
Z(β)

ρ(E; S) =
∫ ∞

0
dβ f (β) exp(−βE) with f (β) :=

P(β|S)
Z(β)

βF(E; S) =
〈

β
〉

E,S

βS =
〈

β
〉

S

βF
′(E; S) = βF

2(E; S)−
〈

β2〉
E,S

U =
〈
(δβ)2〉

S ≥ 0

U = 0 ⇐⇒ canonical

S. Davis. Phys. A 589, 126665 (2022).
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Case study: Superstatistics (Beck & Cohen, 2003)

For a composite system, superstatistics looks like

P(ΓA, ΓB|S) =
∫ ∞

0
dβ P(β|S)P(ΓA, ΓB|β)

P(ΓA|S) =
∫

dΓB

∫ ∞

0
dβ P(β|S)P(ΓA, ΓB|β) =

∫ ∞

0
dβ P(β|S)

∫
dΓBP(ΓA, ΓB|β)

=P(ΓA|β)

The target distribution involves the same P(β|S) as the composite system,

P(ΓA|S) =
∫ ∞

0
dβ P(β|S)P(ΓA|β)

In superstatistics, the whole distribution P(β|S) is invariant upon the
choice of subsystem, so clearly βS and U (its mean and variance) are.
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Thank you!
As a summary:

Steady-state ensembles have a well-defined temperature: βF(E; S)

For a subsystem, bF is directly related to βF of the entire system

There are (at least) two invariant quantities in steady-state ensembles:

βS :=
〈

βF
〉

S

U :=
〈
(δβF)

2〉
S −

〈
βF

′〉
S

Correlations between subsystems are related to U (fluctuations of βF)

Superstatistics fits nicely, but there is a whole space of models outside it
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